
W84–W89 Nucleic Acids Research, 2009, Vol. 37, Web Server issue Published online 12 May 2009
doi:10.1093/nar/gkp373

Berkeley PHOG: PhyloFacts orthology group
prediction web server
Ruchira S. Datta1,*, Christopher Meacham1, Bushra Samad2, Christoph Neyer2

and Kimmen Sjölander1,2,3
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ABSTRACT

Ortholog detection is essential in functional annota-
tion of genomes, with applications to phylogenetic
tree construction, prediction of protein–protein
interaction and other bioinformatics tasks. We pres-
ent here the PHOG web server employing a novel
algorithm to identify orthologs based on phyloge-
netic analysis. Results on a benchmark dataset
from the TreeFam-A manually curated orthology
database show that PHOG provides a combination
of high recall and precision competitive with both
InParanoid and OrthoMCL, and allows users to
target different taxonomic distances and precision
levels through the use of tree-distance thresholds.
For instance, OrthoMCL-DB achieved 76% recall
and 66% precision on this dataset; at a slightly
higher precision (68%) PHOG achieves 10% higher
recall (86%). InParanoid achieved 87% recall at 24%
precision on this dataset, while a PHOG variant
designed for high recall achieves 88% recall at
61% precision, increasing precision by 37% over
InParanoid. PHOG is based on pre-computed trees
in the PhyloFacts resource, and contains over 366 K
orthology groups with a minimum of three species.
Predicted orthologs are linked to GO annotations,
pathway information and biological literature. The
PHOG web server is available at http://phylofacts.
berkeley.edu/orthologs/.

INTRODUCTION

Gene families evolve diverse functions via gene duplica-
tion, domain architecture rearrangements, mutations at
key positions and other evolutionary processes (1,2).
Since orthologs (related by speciation events from a
common ancestor) are more likely to maintain the same

function than paralogs (related by duplication) (3), orthol-
ogy identification is a key first step in protein function
prediction and functional annotation of genomes (4,5),
and has additional applications to species tree estimation
(6), and prediction of protein–protein interaction (7).

Although orthology is an evolutionary term and thus
ideally determined using phylogenetic analysis (8), the
computational cost of phylogenetic reconstruction has
spurred the development of more computationally efficient
approaches. Chief among these are methods relying
on pairwise sequence comparison between genomes [e.g.
InParanoid (9), OrthoMCL (10), COG (11) and eggNOG
(12)]. Nevertheless, an increasing number of web servers
have been developed that provide orthology predictions
based on phylogenetic analysis [e.g. TreeFam (13),
HOGENOM (14), PhylomeDB (15) and Ensembl-
Compara (16)]. Fundamental differences between these
resources lie in the taxonomic range of species considered,
whether orthology predictions are restricted to fully
sequenced genomes, whether trees are reconciled and/or
manually curated, the inclusion of auxiliary data such as
synteny and gene order information, and modes of access.

We present the Berkeley PhyloFacts Orthology Group
(PHOG) web server using a novel phylogenetic approach
to identify orthologs without the computational cost of
species tree-gene tree reconciliation. Berkeley PHOG
makes use of over 57 000 phylogenetic trees in the
PhyloFacts resource. PhyloFacts is an encyclopedia of
protein superfamilies including sequences from both
whole genomes and only partly sequenced genomes
across the Tree of Life (17,18); it is designed to reduce
the systematic errors associated with homology-based
function prediction (1,19,20) by providing a system for
phylogenomic inference of gene function (2,4). Different
variants of the PHOG algorithm are provided to allow
users to target a selected recall or precision depending
on individual preferences. Results on a benchmark dataset
from the TreeFam-A manually curated orthology data-
base show that Berkeley PHOG provides a combination
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of high recall and precision that is competitive with both
OrthoMCL and InParanoid. PHOG can also be tuned
for specified taxonomic distances using a tree-distance
threshold. For instance, a mouse-specific threshold
achieves 95% recall at 91% precision on mouse orthology
detection, while OrthoMCL-DB achieves 83% recall at
77% precision and InParanoid achieves 96% recall but
only 21% precision.

THE PHOG ALGORITHM

The Berkeley PHOG server provides PhyloFacts
Orthology Groups targeting different evolutionary dis-
tances and precision levels. At one extreme, we aim to
provide highly specific clusters of ‘super-orthologs’—
sequences related strictly by speciation, i.e. every node
on the path in the tree joining the sequences represents a
speciation event (21). Super-orthology is thus a more
restrictive definition than the standard definition of
orthology, which requires only that the most recent
common ancestor of the pair must represent a speciation
event. Note that while the standard definition of orthology
is not transitive (22), super-orthology is. At the other
extreme, we aim at maximizing recall while still maintain-
ing high precision. Intermediate levels balancing recall
and precision for different taxonomic distances are also
provided.

The PHOG algorithm takes as input a phylogenetic tree
(typically, a multi-gene tree containing sequences from
many species). For each sequence (leaf), we identify the
closest sequence in each other species by tree distance (i.e.
the sum over the edge lengths). Orthologs can then be
defined as sequences from different species that are each
other’s reciprocal nearest neighbor (RNN) in the tree.
A maximal subtree that contains only RNN orthologs,
having at most one representative of each species
(allowing subtrees containing members exclusively from
one species as either very recent inparalogs or redundant
variants of the same gene in a sequence database), can be
inferred to form a super-orthology group. (We explain in
the ‘Future work’ section some of the reasons why this
inference may not always be correct.) This version of the
PHOG algorithm is called PHOG-S, for PHOG super-
orthologs. A second variant of PHOG is designed to
approximate the standard definition of orthology,
termed PHOG-O, for PHOG-Orthologs. Finally, we pro-
vide a tree-distance thresholded version of the PHOG
algorithm, termed PHOG-T, allowing super-orthologous
subtrees identified by PHOG-S to expand to include addi-
tional sequences based on a tree-distance criterion. Details
of these methods are available at http://phylofacts.
berkeley.edu/orthologs/supplement/v1/.

In predicting orthologs, the PHOG algorithm makes
use only of information about the species of origin, the
tree topology and the tree distances. As is the case for all
orthology prediction methods that are similarly restricted,
there are limitations to this approach. For instance, syn-
teny and gene order relationships can provide important
information to disambiguate between true orthologs and
paralogs. As in most areas of bioinformatics, there is an

inherent trade-off between computational efficiency and
accuracy. By not requiring genomic locus information,
PHOG can analyze sequences for which whole genomes
are unavailable; however, the inclusion of genomic infor-
mation (where available) will obviously result in increased
performance accuracy. We review these issues and our
plans in the ‘Future work’ section.

EVALUATING PHOG PERFORMANCE

To assess the accuracy of PHOG, we used a set of human
sequences and their predicted orthologs in three model
organisms—Mus musculus (mouse), Danio rerio (zebra-
fish) and Drosophila melanogaster (fruit fly)—from the
TreeFam-A resource (13) as a gold standard benchmark.
TreeFam-A uses a sophisticated ortholog-identification
protocol (including tree reconciliation and manual cura-
tion) providing for a high-accuracy dataset. Mouse, zebra-
fish and fruit fly were selected since they had been targeted
for analysis by both OrthoMCL-DB and InParanoid and
represented a range of evolutionary distances. We chose
100 human sequences from TreeFam-A meeting the fol-
lowing requirements. First, TreeFam-A had to include
orthologs for at least two of the targeted species.
Second, to ensure that results of these experiments
would generalize to new data, we filtered candidate
sequences to eliminate homologs (accomplished by remov-
ing sequences having a BLAST E-value <1 or sharing
a common PFAM domain). For each human sequence,
we retrieved orthologs identified by InParanoid and
OrthoMCL-DB in mouse, zebrafish and fruit fly. We ana-
lyzed phylogenetic trees in PhyloFacts containing the
human sequences to predict orthologs for the different
PHOG variants, and produced a full recall-precision
curve for PHOG-T through the use of different thresholds.
Results of the SCI-PHY functional subfamily identifica-
tion algorithm (23) are included for comparison (we trea-
ted all members of a SCI-PHY subfamily as predicted
orthologs).
The results, shown in Figure 1, demonstrate the classic

trade-off between precision and recall. PHOG-S (super-
orthology prediction) has the best overall precision
(94%) but the lowest recall (59%). InParanoid achieves
very high recall (87%), but at a cost of quite low precision
(24%). OrthoMCL-DB has significantly higher precision
than InParanoid but lower overall recall (76% recall and
66% precision). PHOG-O performance is very close to
OrthoMCL-DB, with a modest increase in recall and a
tiny drop in precision (81% recall and 65% precision).
SCI-PHY, which is not designed for orthology detection
per se and makes no use of species information, has sur-
prisingly good performance on this dataset (79% recall
and 71% precision) with slightly better recall and preci-
sion than OrthoMCL-DB.
PHOG-T provides the best performance overall, by

allowing the user to control the recall-precision tradeoff.
For instance, while OrthoMCL-DB achieves 76% recall
and 66% precision on this dataset, PHOG-T achieves
86% recall at 68% precision, making an improvement of
10% in recall at a slightly higher precision. At a recall of
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77%, PHOG-T achieves 80% precision—an improvement
of 14% in precision over OrthoMCL. Similarly,
InParanoid achieves 87% recall at 24% precision; at a
recall of 88% PHOG-T achieves 61% precision—37%
higher precision. PHOG-T also allows users to target
ortholog detection for specific taxonomic distances. For
example, a PHOG-T threshold of 0.296875 provides
84% recall and 81% precision on zebrafish orthology pre-
diction. By contrast, InParanoid attains almost the same
recall as PHOG-T (81%) on the zebrafish orthologs but
has much lower precision (22%), and OrthoMCL achieves
78% recall and 48% precision. When evaluated on mouse
ortholog prediction, PHOG-T attains 95% recall at 91%
precision, while OrthoMCL-DB achieves 83% recall at
77% precision and InParanoid achieves 96% recall but
only 21% precision.
Details of these experiments, including species-specific

results for each method, are available at http://phylofacts.
berkeley.edu/orthologs/supplement/v1/.

PHOG WEB SERVER

The PHOG web server is available at http://phylofacts.
berkeley.edu/orthologs/.

INPUT

We enable two ways of accessing PHOG orthologs:
by sequence identifier and by FASTA sequence input.
Allowed sequence identifier inputs (for protein sequences
only) include UniProt accessions or IDs and GenBank
IDs (but not accessions).

OUTPUT

Results based on input sequence accessions

We present two tables, as shown in Figure 2. The first
presents a list of all the PHOGs containing the sequence,
along with summary data including taxonomic distribu-
tion, number of members, and Gene Ontology annota-
tions and evidence codes. The second table displays
a table of all orthologs found over all PHOGs containing
the query, listed in alphabetic order by taxonomic origin.
Links to data relevant to the function of these predicted
orthologs are provided, including KEGG, BioCyc,
SwissProt and protein–protein interaction (PPI) data.
The PPI data links to a table of interacting partners,
which are then linked to their orthologs, enabling the
user to predict interacting partners via interolog analysis.
Users can also follow a link to the complete PhyloFacts
family ‘book’ containing a multiple sequence alignment,
phylogenetic tree, homologous PDB structures, GO anno-
tations and evidence codes, predicted functional residues,
predicted subfamilies, hidden Markov models for the
family and subfamilies, biological literature, and links to
external resources. From this page users can click a button
to access the downloads page, from which they can down-
load the alignment, the tree, hidden Markov models and
other information associated with the family. The
‘Alignment’ column indicates whether the phylogenetic
tree is based on global homology [a common domain
architecture, clustered using the FlowerPower algorithm
(24)] or local homology. A link to a ‘PHOG Report’
displaying additional data on each orthology group is
displayed under the ‘PhyloFacts Orthology Group’
column. Cross-references provided by UniProt are used

Figure 1. Results of orthology prediction methods assessed on a benchmark dataset from the TreeFam-A resource. Performance was evaluated on
100 human proteins selected from the TreeFam-A manually curated orthology database, with orthologs to each human protein from mouse,
zebrafish and fruit fly. Methods evaluated include several PHOG variants, OrthoMCL-DB, InParanoid and SCI-PHY. PHOG-S represents super-
orthology predictions, PHOG-O represents standard orthology predictions and PHOG-T represents the tree-distance thresholded variants. PHOG-T
variants PHOG-T(M), PHOG-T(Z) and PHOG-T(F) correspond to tree-distance thresholds selected for optimal performance on this dataset for
mouse, zebrafish and fruit fly, respectively. Tree distance thresholds were 0.09375 (mouse), 0.296875 (zebrafish) and 0.9375 (fruit fly). SCI-PHY uses
hierarchical clustering and encoding cost measures to define functional subtypes and is included for comparison. Recall measures the fraction of
TreeFam-A orthologs detected by a method. Precision measures the fraction of a method’s predicted orthologs that are included in TreeFam-A. A
True Positive (TP) is an orthology pair included in TreeFam-A that is also predicted by a method, a False Positive (FP) is an orthology pair predicted
by a method that is not included in TreeFam-A and a False Negative (FN) is a TreeFam-A ortholog that is missed by a method. Left: recall-precision
curves over the entire dataset. Right: table of results for each method for individual species as well as over the entire dataset. Values in red highlight
the recall and precision for species-specific threshold selections.
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Figure 2. PhyloFacts ortholog identification pipeline. The input is a protein sequence, in either FASTA format (for BLAST search) or by
accession. Results of a sequence accession search are displayed in an Orthology Report including a table of all PHOGs containing the query
(F) followed by a table displaying the sequences contained in these PHOGs (G). Links in the columns labelled PhyloFacts Orthology Group
retrieve the corresponding PHOG report (E). BLAST results are displayed in an initial table of results (not shown); users would then select one
of the sequences in the table, to retrieve the Orthology Report for their selected sequence. (A) Protein sequence query. In this example, the query
sequence consists of two evolutionarily conserved domains—an N-terminal Ig domain (pink) followed by a transmembrane helix and and a
C-terminal Toll Interleukin Receptor (TIR) domain (blue). (B–D) PhyloFacts trees containing the query sequence are identified, and orthologs
are extracted from the orthology group for the sequence (indicated by red subtrees). In this example, the sequence is contained in three
PhyloFacts trees. The tree shown in B corresponds to sequences sharing the same overall domain architecture (global homologs). The trees
shown in C and D contain sequences that share local (partial) homology along a single domain; the tree in C contains sequences having an Ig
domain and the tree in D contains sequences having a TIR domain. (Note that the taxonomic distributions of these PHOGs differ, correspond-
ing to differences in orthology predictions across these domains.) (E) PHOG report—this report displays summary data for the PHOG, followed
by a table listing all the orthologs in the PHOG including a link to the sequence database from which the member was drawn, the species of
origin, description and links to external resources (e.g. SwissProt, KEGG and BioCyc). (F) List of PHOGs containing the query.
This table contains summary data about each PHOG, including PFAM domains, GO annotations and evidence codes and taxonomic distribu-
tion. (G) Orthology report: all members of all PhyloFacts orthology groups containing the query are gathered and presented in a table. Note
that some orthologs to the query will belong to more than one PHOG (i.e. containing both the ortholog and the query); the column ‘PhyloFacts
Orthology Group’ provides a link to the most informative PHOG for each sequence as well as to the PhyloFacts book containing that PHOG.
GO annotations and evidence codes, PFAM domains and links to external resources (e.g. SwissProt, KEGG, BioCyc and GO) are also
provided. These data are also overlaid on the phylogenetic tree for the PHOG as well as for the family tree from which the PHOG was
drawn, and can be viewed using the PhyloScope tree viewer.
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to provide many of these links. The ‘View Tree’ column
provides a link to the tree providing the basis for the pre-
dicted orthology. We provide two tree views—one for the
subtree corresponding to the predicted orthology, and one
for the full tree (i.e. including out-paralogs). Data for
orthologs can also be downloaded in CSV format.

Results based on FASTA sequence input

Results are returned in a table, ordered by BLAST score.
Links are provided to the sequence database from which
the sequence was drawn, orthologs to the sequence, the
species, description, E-value, percent identity, and BLAST
bit score. Users can click on any sequence in the table to
view its PHOG orthologs (retrieving the table of results
described in the previous section).

Statistics

PHOG currently contains 366 610 super-orthology groups
(the most restrictive criterion for orthology) containing
a minimum of three species, of which 141 170 contain
at least one eukaryotic member, 242 907 contain at
least one prokaryotic member and 17 467 contain both
eukaryotes and prokaryotes. More than 155K of these
super-orthology groups contain at least one member
in the SwissProt manually curated sequence database.
Tables of orthologs to human and E. coli genes for
selected species are available for download at http://phy
lofacts.berkeley.edu/orthologs/downloads/.

DISCUSSION

PhyloFacts orthology groups (PHOGs) are derived from
analysis of phylogenetic trees of protein families in the
PhyloFacts phylogenomic encyclopedia. Experiments on
a benchmark dataset of mouse, zebrafish and fruit fly
orthologs to human proteins from the TreeFam-A manu-
ally curated orthology database show that PHOG has
performance competitive with both InParanoid and
OrthoMCL-DB, while offering the user control over the
specificity-recall tradeoff and providing versions targeting
different taxonomic distances. The demonstrated preci-
sion of PhyloFacts orthology groups, validated against
the reconciled and manually curated orthologs in the
TreeFam-A resource, makes them a source of high-
accuracy orthologs for inference of protein function in a
phylogenomic context.

FUTURE WORK

The results reported here, as well as the thresholds deter-
mined for PHOG-T, are based on a small dataset of
animal orthologs to human proteins drawn from the
TreeFam-A resource. Note that although none of the
TreeFam-A orthologs were used to train this method,
the problem of small datasets and potential sample skew
will need to be addressed in future work on significantly
expanded datasets. In particular, tree-distance thresholds
determined here are unlikely to be optimal for ortholog
detection at greater evolutionary distances (e.g. human-
yeast orthologs). Future experiments on other manually

curated datasets will be performed to determine the
optimal tree-distance thresholds for different species
pairs. Note that the results presented here are based
on Neighbor-Joining trees; we expect that Maximum
Likelihood trees will produce better results, and will be
switching to the use of ML trees in the future. As noted
earlier, the current implementation of PHOG does not use
gene neighborhood or synteny information. This can lead
PHOG to make mistakes that would have been avoided
had this information been included. For instance, after
whole genome duplication, gene loss occurring indepen-
dently in different lineages may lead to the retention of
different copies in each lineage. The resulting paralogs
would be mistakenly identified by PHOG as (super)-
orthologs. We plan to incorporate gene neighborhood
and synteny information to improve the accuracy of our
predictions in the future. Other plans include expanding
sequence identifiers recognized to include Ensembl identi-
fiers and those of the main model organism databases,
providing orthology confidence scores based on phyloge-
netic support (e.g. bootstrap, ML and Bayesian support),
alignment overlap and other relevant criteria, and using
tree reconciliation software (as computational resources
permit) to label internal nodes of trees as duplication
and speciation events.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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